

Special Application Robotics, Inc. Good Practices for Robotic Technology in Nuclear Applications

Overview

- Introduction
- Robots Myths and Misconceptions
- Types of Robotics
- General Pro/Con
- Selection for Decommissioning
- Project Example
- Savings in Time/Cost/Safety
- Conclusion

Introduction

- After 10+ years of designing robotics and remote systems I want to present general good practices for robotics
- I routinely encounter many misconceptions, prejudices, and misapplication of robotics around the world
- There are some features to avoid and other to strongly consider
- Choosing the right system is key to safety, cost, and schedule

Robots Myths and Misconceptions

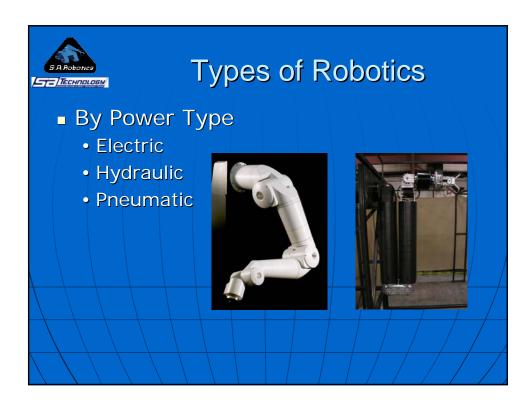
- "Where's the head"
- "When do we get to see the evil robots?"
- The word "Robot" is poorly defined
 - Which is a Robot:
 - Honda Asimo
 - Excavator
 - MSM

Robots Myths and Misconceptions

- Robot Human-like, computer controlled, automated
- For the nuclear world, we typically mean an automated manipulator
- There is a major difference between industrial robotics and academic/R&D robotics
- What is technically possible may not be practical to deploy
 - e.g. vision systems, collision avoidance

Types of Robotics

- By Environment
 - Nuclear
 - Automation/Commercial
 - Undersea
 - Ordinance/Bomb Squad
 - Consumer Market



Key Differences in Nuclear Robotics

- Limited Space
- Must Conform to Facility
- Generally High Payload, Moderate Precision
- Generally Human Controlled
- Specific Safety Issues
 - Remote Recovery
 - Contamination Control
- Low Volume Production
- Highly Variable Tasks, Facilities and Operations

Pneumatic

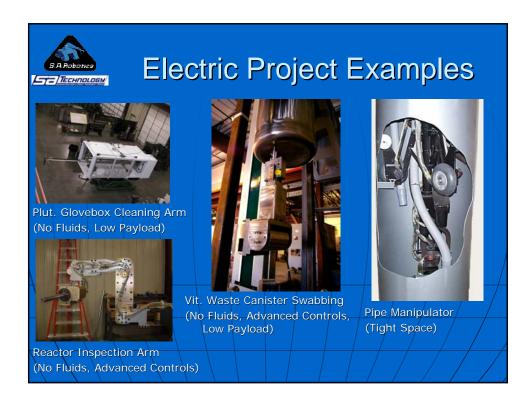
- Pneumatic has many disadvantages
 - Low force potential (7 bar vs 200 bar)
 - Very limited position control (compressible fluid issue)
- Advantages
 - High Speed
 - No Secondary Waste (although vent issue can occur)
- In General, limited nuclear application
- Commercial Example: high speed part extraction

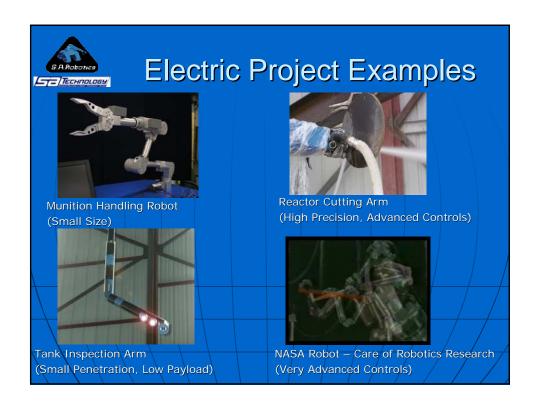
Electric vs. Hydraulic

- The key difference is not power or force
- The key difference is gearing
- Electric manipulators have vastly more gearing
 - Typical (light) motor rotates at 4000 rpm versus a robotic joint which rotates around 4 rpm (1000:1 ratio)
- High gearing also make electric more precise and controllable

Electrical

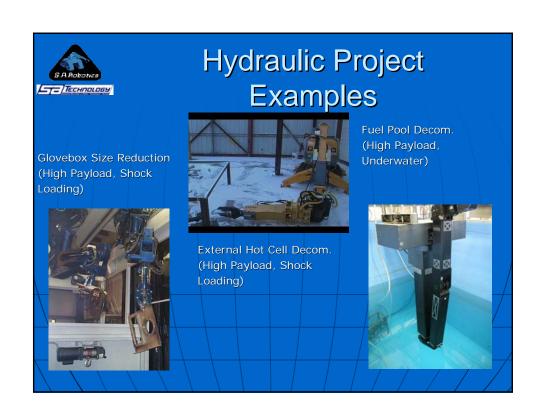
- Advantages
 - Precise
 - Advanced control options
 - Wide range of electrical components
 - Small utility supply lines
 - No fluid
 - Smaller sizes
 - Faster than hydraulic
 - However, Power = (Speed * Force), so high speed systems are also lower force for given power

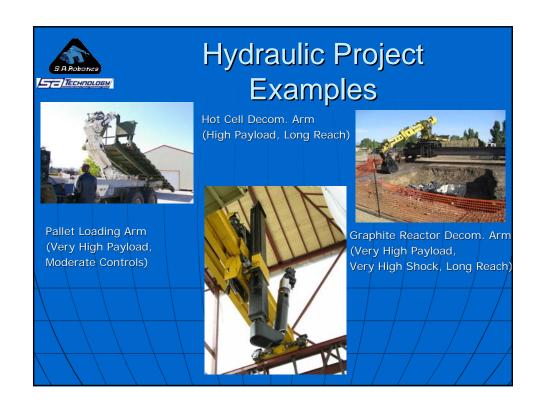

Hydraulic


- Advantages
 - High Force (only because of gearing issues)
 - Long Reach
 - Better Recovery Options (remote valving)
 - Robust (fewer, higher strength parts)
 - Tolerance to Shock Loads
 - Light Weight / Payload ratio
 - Not on small scale
 - External Power Source
 - Can be Submerged

Projects that Favor Electrics

- Zero Tolerance for Fluid
- Small Scale (near human arm scale)
- High Accuracy/Precision
 - under +/- 25mm
 - note this simplistic and is in practice more involved
- Advanced Control Requirements
 - Accurate Velocity/Acceleration Control
 - Teach and Repeat





Situations that Favor Hydraulics

- Shock Loading
- High Payload
- Long Reach
- Submerged
- Large Size
- Difficult Recovery Requirements
 - Very dependent on situation

Features that Should Be Avoided

- *Note: These are only my opinions*
- Advanced Operator Interfaces
 - Master Slave Controllers
 - Complex Force Feedback
- Collision Avoidance
- Absolute Accuracy
- Vision Systems
- Commercial Systems Used Inappropriately
- Complex Telescoping Tubes/Masts

Features to Consider

- Inverse Kinematics
 - Even on hydraulic system
 - Open-Loop or Closed-Loop
- Audible Tone Force Feedback
- Modified Commercial Robots
- 6 Axis Force Sensor
- PLCs and Touchscreens

Safety, Cost, and Time

- Simplicity, Simplicity, Simplicity
 - Start with key functionality and work to minimize additional functions
 - 90/10 rule (e.g. consider doing 90% robotically)
 - Use and modify commercial equipment
 - But don't force it, custom can be better
 - Minimize redundancy and interlocks
 - Use very simple recovery techniques

Conclusion

- Robotics are a necessary part of nuclear work
- Selecting the right robotics system is the key to being successful
- When designing, start with the simplest concept and carefully add features until the requirements are meet
- The nuclear market has unique requirements and solution in robotics